NP22-25 and the JCH-editor v3.1
Random Documentation v1.0

I guess it's about time I put this pack together, if only to keep fellow musicians from repeating my mistakes and hopefully learn from them instead. This release goes a few years back. I've been working in the JCH-editor since 1994, mainly with NP20.G4. Ten years or so ago I started modifying the player - customizing the code to suit our demos better. What started out as a few bytes changed here and there finally grew into worthy (hopefully) descendants of JCH's great family of music players. I have gone back to some of my hacks and adapted them to this release pack (and even written docs!) - something that will hopefully result in more people experimenting with the features or improving them further.

One of the first players I hacked was the one for Cycle. The challenge was to get it to sound as much as possible while tweaking every possible thing to get it to fit within the raster limit HCL had given me - $18 lines if I remember correctly. I've renamed this player NP22.4X and included Round and Round as an example tune. (Purists will find that it is not 100% similar to the demo version of the tune. This is because I did the final hacks in the assembler while optimizing the music data for the demo.)
I experimented quite a bit with my players while getting the music ready for Edge of Disgrace. This resulted in NP23.FX, something I call my flexi-player since it mixes different replay speeds for different instruments. I've included one of the EoD worktunes. Everything is singlespeed except for the snaredrum.
Every player system needs one of those really slim low-maintenance versions for special occasions (or crying Swedish coders who can never seem to save enough cycles for decent music). I had to cut a lot of fat to get NP24.1X to fit into the tight restrictions of our demo Andropolis. I've included one of the worktune stages from the music of that demo as well as the source code for the finished optimized version. It's a good example of how unrolled loops save you cycles.
Recently I also decided to put together a kind of all-features-added version of the player. I've discovered some useful additions over the years that gives you a bigger bag of tricks when composing, and I thought it would be nice to try and add as many as possible into one version. This is NP25.FX. I've included a worktune called Fairchild and I hereby challenge anyone to finish it! You've got an entire voice (as well as filters?) at your disposal. Let me know if you manage to make something out of it! I've also added the source code for it, mostly for Frantic's enjoyment.
Anyway, nothing important has been altered in the JCH-editor except the replay routine, which checks the first byte in the Super Table for replay speed and then adjusts the calls to 1003/1006 accordingly. To signify this small but important change, however, I changed one of the fundamental things about the JCH-editor - the colour!

Next up on my to do-list (except for a lot of music, I suppose) will be to further customize the actual editor - things like PolyPlay and FollowPlay just aren't that useful for me, I've noticed. Feedback is of course appreciated, but I should note that I'm not doing this work for others but myself - so screaming about tweaks or hot fixes that you'd prefer personally will be in vain, I'm afraid.
Massive kudos to Jens-Christian Huus for the original work that most, if not all of this, has grown from. I am also inspired by people like Soeren Lund and Glenn Rune Gallefoss and really grateful for all the great chats we've had about player contents. Finally, thanks to Frantic for taking the time to write decent docs for the JCH-editor as well as NP20.G4 - you inspired me to finally get this done.
To be continued.

Dane of Booze Design
June 6, 2011
	Newplayer 22.4X (Example tune: Cycle2)

Highlights: You get a lot of bang for the buck with this player - some interesting multispeed features coupled with a rather low amount of rastertime used. Music streamlined for demo usage! Everything is calculated in the first call - the remaining three are just there to store data into the SID registers.
The downside is the utter lack of flexibility. Voice 0 can only do 4x pulse programming, the rest is 1x. Voice 1 can do filter programming and 4x arpeggio output. Voice 2 can also do 4x arpeggios. However, the 4x-arpeggios in voice 1 and 2 are static and not pitched by the played note. So basically loads of restrictions. But then again, isn't that what's fun about the C64?
The 8-byte instrument table

	
	A
	B
	C
	D
	E
	F
	G
	H

	High nibble
	Attack
	Sustain
	Arpeggio speed
(3F for 4x arpeggios in v1+2)

	v0:pulse add
v1:filter pass
	v0: pulse timer

v1:

filter add
	Pulse start value
	Arp 1x

-

Points to Arp table
	Arp 4x

-

Points to Table 2

	Low nibble
	Decay
	Release
	
	v1: filter start value
	
	
	
	

Arpeggio Table
7F XX - Jump to loop address. XX is the position to jump to.

7E XX - Set new arpeggio speed. (XX)

7D XX - Set new pulse value. (XX)

Pulse Programming
Only voice 0 has any kind of pulse programming. The other voices uses a plain pulse value (set in byte F of instrument table), which can only be modified from the arpeggio table.
The pulse program for voice 0 is rudimentary at best and is set in the instrument table. Byte F is start value. Every call (4x during one frame) byte D is added to the lowest 8 bits of the pulse register. After the number of frames set with byte E the operation is reversed for twice the amount of frames causing an infinite loop.
Filter programming

Only instruments played in voice 1 use filter programming. There is no toggle for filter on/off, but filter voice can be set from the super table. (01 is default). However, the player will still only read filter program from voice 1, even if several or another voice is filtered instead.
Byte D sets the filter pass + start value of the filter sweep. For the start value, byte 0-F are multiplied by 8 (and 06 is added to avoid silent filters on 6581) resulting in either 6, 14, 22, 30, 38 and so on up to 136 to start with. Every frame byte E is then added to the sweep ad infinitum.

If byte D and E are 00 the filter program will carry on from the previous instrument.

The filtersweep add value can also be modified with a super table command. Playing a new note with a filter program setting will reset it, however.
1x/4x Arpeggio programming
Only voice 1 and 2 use the 4x arpeggio feature. If byte C is set to 3F the instrument will start by jumping to byte H position in Table 2 and read from it directly to the frequency/waveform-registers in 12-byte cycles. If the first byte of a cycle is FE, it will jump into the normal arpeggio table (the byte after FE signifies the position). If the first byte is FF it will loop to another point in Table 2, reading a new 12-byte cycle.
12-byte cycles are ordered like this:

	FRQ lowbyte (call 1)
	FRQ highbyte (call 1)
	WAVE (call 1)

	FRQ lowbyte (call 2)
	FRQ highbyte (call 2)
	WAVE (call 2)

	FRQ lowbyte (call 3)
	FRQ highbyte (call 3)
	WAVE (call 3)

	FRQ lowbyte (call 4)
	FRQ highbyte (call 4)
	WAVE (call 4)

The Super Table
	00-1F XX
	Slide up (add 0000/1FFF to current freq)

	20-3F XX
	Slide down (subtract 0000/1FFF from current freq)

	40-5F XX
	Arpeggio change : Set XX as new instrument arpeggio pointer (40-5F determines instrument 00-1F)

	6Y XX
	Vibrato : (independently of note): Y - speed, XX - width value added/subtracted to freq (08-F8 to low byte, 00-07 to high byte)

	8Y XX
	Set filter value: Set XX as new filter value. Y determines which voice is filtered (2 is default).

	90 XX
	New SR : Set XX as new sustain/release value (reset when new instrument is set)

Replay Speed : The first byte of the Super Table determines replay speed : 01 (single), 02 (multispeed, 2x), 04 (multispeed, 4x) Since the player is hardcoded to fetch data for 4 calls I don't recommend changing this.
Song speed : The second byte of the Super Table determines song speed. It shuffles between high- and lowbyte (64 = shuffle speed between 06/04)
	Newplayer 23FX (Example tune: EoD8

Highlights: This is in itself a decent singlespeed player. The option of setting replay speed (1x/2x/4x) for individual instruments makes it even more decent.

The 8-byte instrument table

	
	A
	B
	C
	D
	E
	F
	G
	H

	High nibble
	Attack
	Sustain
	Hard restart
	Filter pass
	Filter pointer
	Pulse pointer
	Finetune
	Arpeggio table pointer

	Low nibble
	Decay
	Release
	Arpeggio speed
	Replay speed
	
	
	
	

About replay speed : Default is 1 for single speed. The player also handles 2 and 4.

Arpeggio Table
7F XX - Jump to loop address. XX is the position to jump to.

7E XX - Set new arpeggio speed. (XX)

7D XX - Set new filter pass. (XX) Reset when next note is played.

Table 1
Same pulse programming as JCH 20.G4.

Table 2
Same filter programming as JCH 20.G4.

The Super Table
	00-1F XX
	Slide up (add 0000/1FFF to current freq)

	20-3F XX
	Slide down (subtract 0000/1FFF from current freq)

	40-5F XX
	Arpeggio change : Set XX as new instrument arpeggio pointer (40-5F determines instrument 00-1F)

	6Y XX
	Vibrato : (independently of note): Y - speed, XX - width value added/subtracted to freq (08-F8 to low byte, 00-07 to high byte)

	70 XX

	Adjust Filter Program : Set new filter pointer for current note (reset when next note is played).

	80 XX

	Adjust Pulse : Set new pulse pointer for current note (reset when next note is played)

	90 XX
	New SR : Set XX as new sustain/release value (reset when new instrument is set)

	A0 XX
	Adjust Arpeggio : Set new arpeggio pointer for current note (reset when next note is played)

	C0-DF XX
	Adjust Finetune : Set new finetune value for instrument. (C0-DF determines instrument 00-1F)

	F0 XX
	Volume - Set new volume (0F is default)

Replay Speed : The first byte of the Super Table determines replay speed : 01 (single), 02 (multispeed, 2x), 04 (multispeed, 4x) Since the player is hardcoded to fetch data for 4 calls I don't recommend changing this.

Song speed : The second byte of the Super Table determines song speed. It shuffles between high- and lowbyte (64 = shuffle speed between 06/04)
	Newplayer 24.1X (Example tune: Andro9)

Highlights: Uses very little rastertime while giving you basic slide, vibrato, filter and finetune control. There really is no other highlight.

The 8-byte instrument table
	
	A
	B
	C
	D
	E
	F
	G
	H

	High nibble
	Attack
	Sustain
	Pulse start value
	Pulse add value
	Filter program pointer
	Finetune
if in Voice 1
	Finetune
if in Voice 2
	Arpeggio table pointer

	Low nibble
	Decay
	Release
	
	
	
	
	
	

All instruments have hard restart. This is not optional.
Arpeggio Table
7F XX - Jump to loop address. XX is the position to jump to.

Pulse programming
Very basic. Byte C is the start value. Every frame Byte D is added to the lowest 8 bits of the pulse register.
Table 1 (filter programming)

	A
	B
	C
	D

	Filter sweep 8 high bits start value (if 00 = continue previous sweep)
	Add XX to filter 4 low bits
	Add XX to filter 8 high bits
	Filter pass + filter voice

Gives you a 12-bit filter sweep as well as the option to toggle filter on/off for different voices depending on which instrument is selected.

Table 2 (frequency manipulation)
	A
	B
	C
	D

	Add XX to frequency high byte
	Add XX to frequency low byte
	Wait XX frames
	Jump to XX in filter table

As you can see this allows both for slides up and down (just loop to the same point in the table to carry on sliding) as well as some hardcore vibratos. Funny enough the worktune included doesn't even use it.
Default is 00 00 FF 00 for the first 4 bytes in the table.

The Super Table
	00 XX
	Vibrato/Slide: Points to the filter table for frequency manipulation. Only works in voice 2!

Song Speed : This player version does not support shuffle speed.
	Newplayer 25.FX (Example tune: Fairchild)

Highlights: This is my latest version, where I tried to include as much as possible from earlier attempts. It has better control of filter pass and filter program, finetune, hard restart, vibrato alternatives and the option to set replay speed (1x/2x/4x) directly in the tune without having to swap to another player version.

What about rastertime then? Well, the downside from adding just about everything you can think of is of course that it requires memory as well as rastertime. The logical usage for music composed in NP25 would therefore be music competitions and maybe also diskmags - or demo parts that aren't too reliant on music with low rastertime. (I can hear two Swedish coders crying in the far distance.) Notefiles? Do people even do these anymore?
An option if you can't stand music that eats a lot of rastertime is to first compose the tune in NP2011 and then strip the player of all the functions that the actual tune isn't using. For anyone keen on attempting this I'm including the source code for the player. As you can see it's very close to JCH's original source for 20.G4. Have fun importing the packed data and labeling it in your assembler (something I've done quite a number of times now)...
The 8-byte instrument table
	
	A
	B
	C
	D
	E
	F
	G
	H

	High nibble
	Attack
	Sustain
	Hard restart
	Filter pass
	Filter table pointer
	Pulse table pointer
	Finetune
	Arpeggio table pointer

	Low nibble
	Decay
	Release
	Arpeggio speed
	Filter voice
	
	
	
	

About hard restart: 10-F0 is set to Decay in restart. 00=no hard restart.

About filter voice : Normally the player checks for filter and then applies it in whatever voice if you use a filtered instrument. By setting the filter voice value (01/02/04 or combinations of them) you can override and apply filter to the voice of your choice, even if it has instruments without filter playing.

Arpeggio Table
7F XX - Jump to loop address. XX is the position to jump to.

7E XX - Set new arpeggio speed. (XX)

7D XX - Set new filter pass. (XX) Reset when next note is played.

7C XX - Set new sustain value. (XX) Reset when next note is played.

7B XX - Set new instrument finetune value. (XX) Reset when next note is played.

Pulse Table
Same pulse programming as JCH 20.G4.

Filter Table (first 4 bytes)
	A
	B
	C
	D

	Song speed at start

(mix speed between high/low nibble)
	Current song speed (mix speed between high/low nibble)
	Add to global filter

(00-F0)
	Add to global filter
(00-FF)

About mix speed : For shuffle speed set for instance 74 (a mix between speed 07 and speed 04). If you don't fancy shuffle just set something like 33 (alternates between speed 03 and...03!).

About global filter : Global filter is an underlying value that is constantly being added to the actual filter program, allowing for long filter sweeps over several sequences. Use sequences of two bytes (add low+high) in the filter table and point to them using a super table command.
Apart from that the filter table uses the same filter programming as JCH 20.G4.

The 2-byte Super Table
	00-1F XX
	Slide up (add 0000/1FFF to current freq)

	20-3F XX
	Slide down (subtract 0000/1FFF from current freq)

	40-5F XX
	Arpeggio change : Set XX as new instrument arpeggio pointer (40-5F determines instrument 00-1F)

	6X YZ
	Vibrato JCH : (calculated from current note) : X - vibrato feel, Y - width, Z - speed

	7Y XX
	Vibrato Dane : (independently of note): Y - speed, XX - width value added/subtracted to freq (08-F8 to low byte, 00-07 to high byte)

	8Y XX
	Double operation: Set Y as new instrument (00-0F), jump to position XX in Super Table

	90 XX
	New SR : Set XX as new sustain/release value (reset when new instrument is set)

	98 XX
	Adjust SR : Set XX as sustain/release for current note being played (reset when next note is played)

	A0 XX
	Adjust Arpeggio : Set new arpeggio pointer for current note (reset when next note is played)

	A8 XX
	Adjust Pulse : Set new pulse pointer for current note (reset when next note is played)

	B0 XX
	Adjust Filter 1 : Set new filter value for current note (affected by current filter program)

	B8 XX
	Adjust Filter 2 : Set new filter pointer for current note (reset when next note is played)

	C0 XX
	Global filter 1 - Set new global filter pointer. (2 bytes in filter table, 02 is default)

	C8 XX
	Global filter 2 - Reset global filter to 00 and set new global filter pointer (2 bytes in filter table, 02 is default)

	D0 XX
	Adjust Replay Speed : Set new replay speed at the start of the supertable. (Does not reset automatically!)

	E0 XX
	Speed - Set new mixspeed (saved in byte B of the filtter table)

	F0 XX
	Volume - Set new volume (0F is default)

Replay Speed : The first byte of the Super Table determines replay speed : 01 (single), 02 (multispeed, 2x), 04 (multispeed, 4x)
